
Poster Abstract: API QoS Prediction for Apps in

Cellular Networks
Yali Zhao, Shangguang Wang*, Lubao Wang

State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications

 Beijing, China

{zhaoyali;sgwang;lubao}@bupt.edu.cn

Abstract—One App running on mobile devices often needs to

invoke several frequently-used Application Programming

Interfaces (APIs) to perform service provision. However, when

these mobile devices roam around another city, these APIs’ QoS

performance changes or degradation often make App failure.

Hence, accurate QoS prediction before these APIs are invoked

becomes an important issue for App developers. In this paper,

we propose an accurate API QoS prediction approach by using

user similarity computation and base-station similarity

computing. The experimental results demonstrate the efficiency

and effectiveness of our approach.

Keywords—API; App; QoS; base-station

I. INTRODUCTION

With the rapid development of smart phones and other
mobile devices, the Internet is no longer confined to PC. More
and more smart mobile devices invoked the Internet by
connecting base-stations which have been built everywhere,
forming cellular networks. Based on the growing popularity
of mobile devices, a large number of Apps have been
developed and Apps running on mobile devices often need to
invoke multiple Application Programming Interfaces (APIs)
to perform service provision by connecting base-stations of
cellular networks. Then, it is very important to know which
APIs have better QoS (values) for Apps performance
optimization. Hence, how to accurately predict the QoS before
APIs are invoked is a very important issue for Apps
performance optimization of mobile devices.

The API QoS are notably more volatile, and mobile
devices are often roaming around in cellular networks. Due to
the mobility of mobile devices, history QoS of APIs in the past
base-station will fail when mobile devices move around
another city and the API QoS in the current base-station is
empty. Note that in order to easily understand our approach,
we take user represent mobile device in this paper. Although
many QoS prediction approaches have been proposed in
Internet environments, but they often fail in making accurate
API QoS prediction in cellular networks [1]. For instance, for
one user called Sam in Beijing, when use one video App on
his mobile phone, the App will invoke one (video compression
encoding) API in cellular network environments, and then its
response time is 100 msec on average where the host server
running the API is deployed in Beijing. When the user roam
around Shanghai, if the App still use the API, traditional
prediction approaches often monitor its historical QoS data of
Beijing and obtained response time is still 100 msec. However,
its real response time is higher than 100 msec which leads a

sharp drop in App QoS performance, or even App invoking
failure. The main reason why traditional approaches fail in
accurate QoS prediction is that they do not take user mobility
into account [2]. When one Beijing user travels to Shanghai,
the cellular network environment has changed and the history
QoS data of the API in Beijing is invalid for the Shanghai user.

Different from traditional approaches, when users roam
around another city, if there are some users in the same base-
station, they invoked the API, then we can predict the QoS
based on their historical data; otherwise, we use other users’
historical data from other base-stations where they invoked
the API.

II. OUR APPROACH

In this approach, we firstly calculate similar base-stations
by adopting Pearson Correlation Coefficient or find similar
users, and then select Top-K users or base-stations to predict
API QoS.

Similarity

Computation

QoS

Data

Pearson

Correlation

Coefficient

Similarity

Selection

QoS

Prediction

Figure 1. Procedure of our approach

A． Similarity Computation

When we predict the QoS of API a invoked by the active
user u, we must take the current base-station of the active user
u into account. According to the API a invoked by user u, we
can divide the situation into two cases, as follows:

Case 1. The API a invoked by the active user u has history
API QoS in the current base-station, i.e., users in control of
the base-station adopted the same API as the active user u
before, so the history QoS of the API a is stored in the current
base-station.

Case 2. The API a invoked by the active user u has no
history QoS in the current base-station, i.e., users in control
of the base-station did not adopt the API a before, so there is
no history QoS of the API a.

1) User Similarity Computation

For situation as Case 1 descripted, the history API QoS in
the past base-station of the active user u is invalid and it cannot
be used for user similarity computation. However, we can use
the history QoS of the same API as the active user u adopts.

More and more base-stations are built and the distribution is
concentrated. Based on the condition, we think users in the
current base-station who adopted the API a are similar.

The similar users set of active user u is descripted as
𝑆𝑢(𝑢𝑖) = {𝑢1, 𝑢2, … , 𝑢𝑖 , … , 𝑈}, 𝑖 = 1,2, … , 𝑈 , where U
denotes the total number users adopted the API a in the current
base-station.

2) Base-Station Similarity Computation

In this paper, we assume 𝑞𝑢,𝑎
𝑡 represents the history API

QoS of user u repeatedly invokes API a (a=1,2,3, …) at the t-
th (t=1,2,3, …) time.

For situation as Case 2 descripted, i.e., the API a invoked
by the active user u has no history API QoS in the current
base-station. We should find the similar base-stations for it.
Based on the Pearson Correlation Coefficient (PCC), base-
station similarity computation employs the similarity between
base-stations. We calculate the similarity between base-
station b1 and base-station b2 by the following:

𝒔𝒊𝒎𝒃𝟏,𝒃𝟐
=

𝟏

𝑨
∑

∑ (𝑷𝒃𝟏,𝒂
𝒖 −𝑬𝒃𝟏,𝒂)(𝑷𝒃𝟐,𝒂

𝒖 −𝑬𝒃𝟐,𝒂)𝑼
𝒖=𝟏

√∑ (𝑷𝒃𝟏,𝒂
𝒖 −𝑬𝒃𝟏,𝒂)𝟐𝑼

𝒖=𝟏 √∑ (𝑷𝒃𝟐,𝒂
𝒖 −𝑬𝒃𝟐,𝒂)𝟐𝑼

𝒖=𝟏

𝑨
𝒂=𝟏 (1)

with 𝑷𝒃𝟏,𝒂
𝒖 =

∑ 𝒒𝒖,𝒂
𝒕𝑻

𝒕=𝟏

𝑻
 (2)

 𝑬𝒃𝟏,𝒂 =
∑ 𝑷𝒃𝟏,𝒂

𝒖𝑼
𝒖=𝟏

𝑼
 (3)

where 𝑠𝑖𝑚𝑏1,𝑏2
 is the similarity between base-station b1 and

base-station b2. 𝑃𝑏1,𝑎
𝑢 represents the QoS of API a invoked

by user u in the base-station b1. 𝐸𝑏1,𝑎 represents the QoS

expectation of API a invoked in the base-station b1. Where A
denotes the number of same APIs that invoked in base-station
b1 and b2.

If two base-stations happen to have similar QoS
experience on a few same APIs invoked, then using the PCC
will overestimate the similarities of base-stations. To address
this problem, we employ a significance weight to reduce the
influence of a small number of similar APIs invoked [3]. An
enhanced PCC between different base-stations is defined as
follows:

 𝒔𝒊𝒎𝒃𝟏,𝒃𝟐

′ =
𝟐∗|𝑨𝒃𝟏

∩𝑨𝒃𝟐
|

|𝑨𝒃𝟏
|+|𝑨𝒃𝟐

|
𝒔𝒊𝒎𝒃𝟏,𝒃𝟐

 (4)

where |𝐴𝑏1
∩ 𝐴𝑏2

| is the number of APIs that invoked both in

the base-station b1 and the base-station b2, and |𝐴𝑏1
| and |𝐴𝑏2

|
are the number of APIs invoked in the base-station b1 and
base-station b2 respectively.

B． Top-K Similarity Selection

We select Top-K similar users based on the distance
between other users and the active user. The shorter the
distance, the stronger the similarity. The Top-K similar users
set of active user u as 𝑆𝑢

′ (𝑢𝑖) = {𝑢𝑖 ∈ 𝑆𝑢(𝑢𝑖), 𝑑𝑖𝑠𝑡(𝑢, 𝑢𝑖) >

1 https://www.nsnam.org

0, 𝑢 ≠ 𝑢𝑖}, where 𝑑𝑖𝑠𝑡(𝑢, 𝑢𝑖) represents the distance between
u and 𝑢𝑖(𝑖 = 1,2, … , 𝐾) .

We use the Top-K to rank the base-stations based on PCC
similarities and select the Top-K most similar base-stations for
making value prediction. A set of Top-K similar base-stations
of base-station b can be found as 𝑆𝑏(𝑏𝑖) = {𝑏𝑖|𝑠𝑖𝑚𝑏,𝑏𝑖

′ >

0, 𝑏𝑖 ≠ 𝑏, 𝑖 = 1,2, … , 𝐾}.

C． QoS Prediction

According to whether the QoS of API invoked by active
users exist history data in the current base-station, we predict
the API QoS for active users as following:

1) Based on the user similarity, we predict the API QoS of
the active user u as follows:

 𝑝𝑟𝑒𝑑𝑢𝑠𝑒𝑟(𝑢, 𝑎) =
1

𝐾
∑

∑ 𝑞𝑢𝑖,𝑎
𝑡𝑇

𝑡=1

𝑇𝑢𝑖∈𝑆𝑢
′ (𝑢𝑖) (5)

where 𝑞𝑢𝑖,𝑎
𝑡 represents the QoS of API a invoked by user

𝑢𝑖 at the t-th time, T is the total times that the API a
invoked by user 𝑢𝑖(𝑖 = 1,2, … 𝐾) repeatedly.

2) Based on the Top-K similar base-stations, we proposed
an approach to predict the API QoS for the API a
invoked by active user u as follows:

 𝑝𝑟𝑒𝑑𝑏𝑎𝑠𝑒−𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑎) =
∑ 𝑠𝑖𝑚𝑏,𝑏𝑖

′ ∗𝐸𝑏𝑖,𝑎𝑏𝑖∈𝑆𝑏(𝑏𝑖)

∑ ∈𝑆𝑏𝑏𝑖
(𝑏𝑖)𝑠𝑖𝑚𝑏,𝑏𝑖

′ (6)

where 𝐸𝑏𝑖,𝑎 represents the QoS expectation of API a

invoked in the base-station 𝑏𝑖(𝑖 = 1,2, … , 𝐾) and b
represents the current base-station of the active user u.

III. EXPERIMENT AND CONCLUSION

We conducted simulation-based experiment with the NS-
3 simulator1. We simulated mobile devices and base-stations
by the LTE module. The experimental results show the
efficiency and effectiveness of our approach. In this paper, we
presented an approach to predict the new APIs’ QoS of base-
station with consideration of users’ mobility and the volatile
of API QoS. Compared to previous approaches, our approach
considers not only the volatile of API QoS but also users’
mobility to adapt the mobile environment. More than that, we
have proposed two different approaches according to whether
the related QoS in the current base-station.

REFERENCES

[1] Y. Ma, S. Wang, P. C. Hung, C.-H. Hsu, Q. Sun, and F. Yang, "A

highly accurate prediction algorithm for unknown web service QoS

values," IEEE Transactions on Services Computing, 2015, DOI:
10.1109/TSC.2015.2407877.

[2] Y. Ma, S. Wang, F. Yang, and R. N. Chang, "Predicting QoS Values

via Multi-Dimensional QoS Data for Web Service
Recommendations," In Porceedings of IEEE International

Conference on Web Services (ICWS 2015), 2015, pp. 249-256.

[3] Z. Zheng, H. Ma, M. R. Lyu, and I. King, "Qos-aware web service
recommendation by collaborative filtering," IEEE Transactions on

Services Computing, no.2, vol. 4, pp. 140-152, 2011.

